
A
PROCESSOR

CARD

)

j

IItiE

ALF

\

The

Processor Gald
Owne/s Manual

Complete lnstructions
for the

10-5,7
4D8088 Processor Gald

including the

Formula Transfer Link
and the

Multiple Event Timer

Copydght @ 1982
ALF Prcducts lnc.

1¡148 Estes
Denver, CO 80215

u.s.À

ì

)

P¡rl l{umbcr 1l.l.7A

The information in this manual was believed to be accurate at the time of publication. Although this manual has
been carefully checked for accuracy by our inebriated technical staff, we assume no responsìbility for errors or
omissions. ALF reserves the right to make changes in the product and/or specifications without noiice.

AD8O88 PROCESSOR CARD
FULL 1 YEAR WARRANTY

ALF Products lnc. warrants that computer programs will function as described in their associated owner's
manuals, and that all other items will be free of defects in material and workmanship. ALF will correct any fault in a
computerprogram (or its manual, or both) or repair or replace (at ALF's choice) any defective item free of ôharge for
one year from the date of sale by ALF.

To obtain warranty service, you must contact ALF at 1448 Estes, Denver, Colorado 8021S or (303) 234-Og7t lor a
service address. You must send the complete product, proof of purchase date, and a detaileò description of the
difficulty to the service address. You þãffiîõhipment to ALF, ALF pays for shipment back.

Any alteratlon of the product.serlal number yo¡ds this warranty. ih¡s warranty covers only ALF's products, so
where local laws permit ALF wlll not be llable for consoquonfiaidamages.

Ask your state government for details on their "implied warranty" whicñalso covers this product.

The lollowing slalemenls, which shed no new mean¡ng on this warranty, are requ¡red by Federal Trade Comm¡ss¡on regulations and are meant to s¡mpl¡fy warranty language: ,.Somo

tp.clllc l.g.l dght!, tnd you m.y.l3o hry. oth.r rlghtr rhlch vary lrom rtrt. t;state."

CONGRATULATIONS!

Your new AD8O88 Processor Card is designed to give you faultless performance for years to come. Using the
Processor-Card with programs like FTL is so easy, you won't need to pay any attention tó the card itself. But ihere
are a few features we think you might be interested in knowing. The Proiessór Card is constructed from top-quality
components, carefully selected for optimum performance. To make the card run cooler, several special tow-¡iower
circuits are used. All integrated circuits are installed in sockets for easy replacement should they ever fail.'

The unique design of the Processor Card, made possible by ALF'J years of experience in äesigning Apple-
compatible products, includes a careful selection of functions. Êach funõtion ¡s inclúded for its usefùlnejs tå'tfre
user, not for how it will sound in an advertisement. We believe your Processor Card represents the most versatile
and reliable design at a reasonable price. Additional functions can be added by means of designed-in expánsion
capability.

Your choice of the ALF Processor Card shows that you appreciate the same high standard of quality and crafts-
manship that we do. ALF's products are chosen by thoughtful and intelligent comiuter users around the world. We
hope you enjoy using your card as much as we've enjoyed creating it f-or you.

Hardware Design: John Ridges.
Software Design: John Ridges, phitip Tubb, Steve Wells.
Manual: Philip Tubb.
Graphics: Rick Harman.
Photo: Chuck Renstrom.

"Apple" is a trademark of Apple Computer lnc.

CONTENTS
f . INSTALLATION

1-1 lnstalling the card.
1-1 Tips.
1-2 Preparing the disk.
1-2 Typing "FP".
1-2 The RAM card.
1-2 Radio-TV interference.

2. FTL
2-1 lntroduction.
2-1 Using FTL.
2-1 FTL stays in memory.
2-2 ls FTL in memorf
2-2 Auto slot.
2-2 Setting up FTL yoursetf.

3. MET
3-1 lntroduction.
3-1 Setting up MET.
3-1 Picking a resolution.
3-2 Timing.
3-3 The MET READ program.

3-4 Commands.
3-4 View mode.
3-6 Plot mode.

3-6 Changing parameters.
3-7 Reading data directly.
3-7 Setting up MET yourself.

4. PROM ROUTINES
4-1 lntroduction.
4-2 Miscellaneous commands.
4-3 The busy flag (and random).
4-4 lnteger math commands.
4-4 Floating-point math commands.
4-6 Direct calls in B0BB.
4-6 "Available" command codes.

5. HARDWARE
5-1 Memory allocation.
5-1 l/O allocation.
5-1 l/O interface status.
5-1 Expansion port.
5-3 PROM size selection.
5-3 On-board RAM expansion.
5-4 Schematic.
5-7 Repair illustration.
5-8 Photo.

INDÐ(

1

INSTALLATION

J

1-1 Installation Processor Card

THIS I,IANUAL DOES f{OT COYER USE OF THE APPLE II COI,IPUTER. READ THE I{AÎ{UALS

suppLIED taITH youR AppLE, At{D FA}TILIARIZE Y0URSELF I{ITH ITS USE, BEFoRE

COl{TINUII{G.

INSTALLING THE CARD
Installation of your Processor Card is easy. Just follow these instructions:

1. Turn the App'le off and remove the top cover (see your Apple manual for
detail s).

2. All Appìe-compatìb'le circuit cards are sensitive to static electnicity. Care
should be taken to protect cards from excessive static. It is best to carry
the card in one hand, and touch objects only with the other hand (thus
avoiding dischange through the card). After opening the Apple, you should
eliminate any static charge you may have accumulated (by walking on carpets,
for example) by touching the metal power suppìy case in the left side of the
Apple.

3. Select which peripheral slot you wish to use. The slots are numbered from p

(left) to 7 (right). Any of the eight slots may be used. You may wish to make

a note of which slot you've selected for future reference.

4. Plug the Processor Card into the selected slot. Make sure the card plugs in
compìetely, but avoid using enough pressure to bend the Apple's main board.
The main App'le board can be damaged by excessive bending.

5. Rep'lace the top'cover (see your App'le manual for details). Instaììation is now

comp'lete, and you can switch the Apple on if you desire.

TIPS
- Alrays turn the Apple off before inserting or removinq any circuit card.
Considerable damage can occur to the card and your computer otherwise.

- Some of the parts used on the Processor Card are particularìy static sensitive
and may be protected by other parts on the card. Therefore, no part should be

removed from the card unless s peci a'l anti-stati c p recauti on s are ca ref ul ly
followed. Leave repairs to professionals.

- Avoid dropp'ing the Processor Card onto a hard surface or severely jo'lting'it.
Normal handlìng will not harm the card, but a jolt can chip the cnysta'l
(suspended inside the small meta'l can).

Processor Card Installation I-2

PREPARING THE DISK
Software for the Processor Card js supplied on a 13-sector DOS 3.2 disk.

If you normaìly use DOS 3.2, you can use the disk as suppìied. (You may wish to
make a backup copy. Copyright law requires that you put our copyright notice on
the backup copy. A label is suppìied for your convenience.) If you normally use
DOS 3.3 (16-sector), you will need to initialize a DOS 3.3 disk, and then move all
the programs from the disk supp'lied onto your initialized disk (using the MUFFIN
program suppìied with DOS 3.3, see your DOS 3.3 manual for details). PlaÒe the
copyright label suppìied on the new disk.

TYPING 3'FP"

Many of the programs suppìied with the Processon Card are a combination of
BASIC and machine language. These programs will work properìy under normal
circumstances, but will not work if run after a program which modifies the
App'lesoft program pointers. The command FP will reset the appropriate pointers.
If you're not sure if the programs you've run recentìy change the program
pointers (or if you stop a program with control-C or reset), type FP before
running (or loading) any of the Appìesoft programs supplied.

THE RAM CARD
FTL requires a Language Card or any of the equivalent 16K RAM cards (or

ìarger RAM cards that simulate a Language Card). This card will be referred to
simply as "the RAM card"'in this manual. You shouìd not confuse this with the
64K RAM card accessory for the Processor Card, which will be referred to as
"the AD64K RAM card". The memory on the AD64K RAM card can be accessed only by
the 8988 processor, and not by the Appìe.

RADIO.IV INTERFERENCE
Due to the high speeds at which the circuit operates, it naturalìy generates

a small amount of radio frequency energy. Shielding in the computer's case js
designed to prevent this energy from escaping. Aìthough the processor Card and
the Apple computer have been carefulìy designed to reduce emission, radio
interference might possib]y occur in unusual situations. You can determine if
the computer is the source of interference by turning it on and off and
observing whether the intenference stops and starts. Reorienting television or
radio antennas, or moving the radio or computer to a different location or
electrical outlet might solve any interference problem. A booklet "How to
Identify and Resolve Radio-TV Interference prob'lems',, number gga-pgg-p9345-4, .is

available from the U.S. Government Printing Office, I'lashington, DC Zp4gZ. If you
think this rambling paragraph is si'lly but requined by government regulations,
you're right.

lIJ
7

2.T FÏL Processor Card

INTRODUCTION
FTL, the Formula Transfer Link, is a program that noutes Applesoft math

functions to the Processor Card for computation. Since the 8988 processolis
faster than the Apple's 659? processor, the math functions are computed more
quick'ly. FTL actualìy consists of three programs. One program, located in the
RAM on the card, is written in 8988 machine language. It performs some of the
mathematical computations, and calls noutines in the card's ROM to perform the
other computations. Another "program", ìocated inside the Appìesoft language
itself, 'is written in 65þ2 machine ìanguage. It consists of small "patches" at
the beginning of each math routine in Applesoft, and each patch routes the
pârticular math function to the Processor Card. The third program is the FTL
program supp'l'ied on disk with the card. It loads the other two programs into
their appropriate memory locations so they can be used.

USING FTL
If you've a'lready booted up and now wish to use FTL, you simply insert the

supplied disk (see the instructions in the Installation section) and type RUN FTL.
The FTL program will ask which s'lot your AD8p88 Processor Card is in. Type the
slot number and press return. All necessary set-up will then be performed by

the program.
If your computer has Integer BASIC in ROM, you must already have App'lesoft

BASIC in your RAM card (or a LANGUAGE NOT AVAILABLE message wilì be printed).
Instructions for 'loading Applesoft into your RAM card are given in the DOS 3.3
manual. The FTL program wi'll unprotect the RAM card, make the necessary
changes to the Applesoft language, and reprotect the RAM card.

If your computer has Appìesoft BASIC in ROM, the FTL pnogram will unprotect
the RAM card, copy ROM Appìesoft into the RAM, make the necessary changes to the
Appìesoft 'language, and protect the RAM card.

FTL STAYS IN MEMORY
0nce you've run FTL, it will stay in memory even as you run various

Appìesoft programs. Thus, you can run as many Applesoft programs as you 'like,

and they will all run faster. The following things will cause FTL to be ìost: (1)

turning off the Apple, (2) booting up with DOS 3.3, (3) loading or running an

Integer BASIC program or typing INT, if your computer has Appìesoft in R0M, (4)

running any program that changes the contents of the RAM card (or which bank'is
enabled), or (5) running a different Processor Card program (such as MET). If
you do any of these things, you will need to run the FTL program again next time
you w'ish to use it.

Booting up a DOS 3.3 disk causes FTL to be lost because the DOS 3.3 boot-up
pnocedure enases the RAM card. DOS 3.2 doesn't erase it. There's no apparent
neason for D0S 3.3 to do this, but fortunateìy the erase routine is easiìy
removed. To in'itialize a new D0S 3.3 d'isk that doesn't erase the RAM card,

Processor Card FTL 2.2

simpìy type POKE -L6429,I73 (on a 48K Apple) before using the INIT command. If
you have Applesoft in ROM, you must also do POKE -16432,þ and POKE -16435,P
before INIT to keep DOS 3.3 from switching to ROM Appìesoft. Copy-protected DOS

3.3 disks are a probl em s'ince you can't remove the erase routi ne. Unless the
software supplier has aìready removed the erase routine, you won't be able to
use FTL w'ith programs on a copy-protected DOS 3.3 disk.

If you type INT or try to load or run an Integer BASIC pnogram on an Apple
with Appìesoft in ROM, FTL will be lost as just mentioned. (lf your Apple has
Integer BASIC in R0M, you'll be able to switch between Integer BASIC and
Appìesoft-with-FTL as usuaì.) If this happens, you can recover FTL just by
typing ?PEEK(-16256). If you prefer, you can use PRINT PEEK(-16256) instead.
Don't try this peek on a computer with Integer BASIC in ROM (of course, there's no
need to).

IS FTL IN MEMORY?
You can tell whether FTL is active or not by typing ?7¡2 and pressing

return while in Applesoft (l prompt). (If you like, you can type PRINT 7¡2
instead.) l,lhen 49.ØPPPþ9L is printed, FTL is not in,memony. tJhen 49 is printed,
FTL is active. The results are different because FTL uses different aìgorithms
than App'lesoft does. The results will differ on'ly very slightly.

AUTO SLOT
The FTL program can be set to use a part'icular slot when it is run rathen

than ask you for the AD8Ø88 slot. This would be desirable if you're not going to
move the Processor Card from slot to sìot frequently. As an exampìe,'let's
assume your Processor Card is in sìot 3. To set FTL to use only slot 3 you
would type:

]FP

IL0AD FTL

lLrsT lp
10 SLOT = 8

110 SL0T = 3

lsAvE FTL

(the computer prints this line and the I prompts)

Now when you run FTL it won't ask for the AD8988 slot. To go back to normal
(w'ith FTL asking for the slot number), put the SL0T = 3 back to SLQT = 8, using
the same procedure as above.

SETTING UP FTL YOURSELF
You can have your own program set up FTL automatically. First, poke the

slot number of the AD8p88 card times 16 into memory ìocation 6. Next, BLOAD

FTL.B into memory and caìì 'it. For exampìe, in an Appìesoft program for a 48K

2-3 FTL Processon Card

Apple w'ith the AD8p88 card in slot 3, you cou'ld use:

lp p0KE 6,48 : PRINT CHR$(4h"BL0AD FTL.B,A37r29": CALL 37L2ø

In this example, your program must not use any string variables before the above

line'is executed, because the FTL.B program is BL0ADed into the string variabìe
area. The FTL.B program can be loaded into any memory anea that doesn't
conflict with anything else and where L29þ bytes are availabìe ffust substitute
the appropriate address after the ",A" in the BLOAD and after the "CALL").

The FTL.B program can easily be moved to another disk. Load it into
memory by typing BLOAD FTL.B,A37129 and then saveit on the desired disk by

typing BSAVE FTL.B,A37L29,LITPP (48K is required to load at this address).
Remember you must have a label that reads "FTL @ 1982 by ALF" on any disk you

put the FTL.B program on. If you pìan to se'l'l your program and wish to put
FTL.B on the disks to be sold, contact ALF for a license agreement.

I3NI

3-1 MET

NUMBIR TO TYPE RESOLUTION

þ 50 microseconds
1 19þ nicroseconds
2 5þþ nicroseconds
3 1 millisecond
4 5 milliseconds
5 10 milliseconds
6 5p mìlliseconds
7 Lþ9 niììiseconds

Processor Card

INTRODUCTION
MET, the Multìple Event Timer, is a program that allows the Processor Card -

to be used as a timer. MET is written entire'ly in 8088 machine language. It
doesn't access the Appìe's memory while it is set up for timing, and thus doesn't
affect execution speed of the Apple's processor. This allows ìt to be used to
measure the execut'ion time of pnograms or routines being run by the Apple's
processor. 457 events can be stored wjth 2K of RAM on the Processor Card (1149

events with 4K, 1823 w'ith 6K, and 2595 with 8K).

SETTING UP MET
The MET program can be set up simply by insenting the supplied disk (see

the instructions in the Installation sect'ion) and typing RUN MET. Note that MET

cannot be used whiìe FTL is active (unless FTL is used on one Processor Cand

and MET on another, w'ith MET set up before FTL). The message "FTL IN USE."

will be printed 'if this is attempted. Normaììy, the set-up program asks for the
AD8p88 slot and for the desired t'ime resolution. The choices fon time reso'lution
a re:

MAXIMUM

3.27 68

6. 5536

32.768
65.536
327.68
655. 36

3 ,27 6.8
6,553.6

DURATION (per event)
seconds
seconds
seconds

seconds
seconds
seconds
seconds
seconds

PICKING A RESOLUTION
One microsecond is a millionth of a second. One millisecond is a thousandth

of a second. Let's consider the LPþ millisecond resolution setting. IPP
mjlliseconds is .1 seconds. If the interval being timed is any duration less than
.1 seconds, MET w'ill store it as taking .1 seconds. Any interval .1 to under .2
seconds in duration will be stored as .2 seconds, and so forth. Since MET uses
numbers from I to 65,536 to store the duration measurements, while in the Iþ9
millisecond resolution mode it can store durations fnom .1 (1 times .1) to 6,553.6
(65,536 times.l) seconds. Longer durations will "wrap around", so a 6,553.7
second duration would be stored as .1 seconds, 6,553.8 would be stored as .2,
and so forth.

General'ly, you'lì want to pìck the smaìlest resolution that won't wrap
around. For example, if you expect to time events that will take up to Iþ
seconds, you'll want to use the 5þþ nicrosecond resolution since it can tìme up

I

Processor Cand MET 3-2

to 32 seconds. The Iþþ microsecond resolution is too small since it can onìy
time up to 6 seconds. If resolut'ion is criticaì, you can use the smallest
resolution even though it might wrap around. For example, if you're timing
something that takes about 5 seconds, you could use the 5p microsecond setting
and remember to add 3.2768 seconds to the result obtained.

It is important to avoid resolutions which are too large. Only one event
may occur in each resolution interval. For example, with I9ø millisecond
resolution, if two events are sent to the 8088 in the same Iþ9 nilì'isecond
'interval, only the ìast one will be recorded.

TIMING
After MET is set by typing RUN MET, you are ready to begin timing. Each

event is signaled to the 8988 by writing a reference number to one of its
memory addresses. The memory address to use is SL0T*16-16255 where SLOT is
the slot number of the AD8p88 card (0-7). The first poke to that addness begins
timing, and each subsequent poke causes MET to store the number poked and the
tìme s'ince the pnevious poke. (The first number poked, which starts the timing,
ìs not stored.) For example, let's say we want to time how long the statement
A=7^2 takes to execute. l,le'll need the smaìlest resolution, so we RUN MtT and
ask for resoìuti'on number 0. If the ADgp88 is in sìot 3, we need to poke at
3*16-16255, which is -16297. Now, type in this program:¿

Notice line 2p is skipped. This is where we will put the statement we want to
time, but first we need to know how much overhead thene is. MET stored the
reference number 1 and the time it took between pokes when we ran the prognam.
It is now timing how ìong it w'ill be until the next poke. tJe type:

FP

lp P0KE -16297,9
3p POKE -162þ7,1
RUN

2þ A=7¡2
RUN

2þ A=l*l
RUN

(ready fon a new program)
(start timing)
(stop timing)

(the statement we want to time)

The two pokes are still there, with'line 29 between them. MET has now stored
how ìong it took us to type the line and type RUN, and this is stored w'ith
neference number 0. The time to run line Zg, pìus the overhead, .is stored
with reference number 1. Let's also t.ime A=7*7. l,le type:

(new statement to time)

3-3 MtT Processor Card

Again, MtT t'imes how long'it took to type the line and stores that w'ith reference
number p. The t'imìng for the new line 2þ'is stored wjth a I reference number.

Now we can type RUN MtT READ to see the results. After asking for the AD8p88

slot numben, MET READ wìlì read the data from the Processol Card, and then show

an = prompt. Type VIEW to see the data. The program shows:

VALUT .PsMS TOTAL TIME

1

p

1

ø

I

þ
1

2

3

4

159

36967

l15þ
41 348

236

159

37126

3827 6

79624
7e869

The lines wjth VALUE's of I represent typing time, so they'l.l vany quite a bìt
from one try to another. The other times may vary sì'ightly, and of course the
T0TAL TIMEs will change to match the t'imes shown. Event #0 shows 159 t'imes 59

m'icroseconds ("MS" means m'illiseconds, and .þ5 mìlìseconds equals 59

microseconds), or 7,95þ microseconds. Thjs is the amount of process'ing t'ime

between the two pokes,'mostly spent turning -L62þ7 into bìnary. Note that the
actual time could have been as little as 7,99þ micnoseconds, since MET rounds up

to the next 59 microsecond interval (when in 5p microsecond resolut'ion). Also,
the crystal tjme base used has an accunacy of plus or minus P.PL%, wh'ich 'in this
case would be plus or m'inus þ.795 microseconds.

Event #2 shows 115p intenvals and is the timing of the A=7¡2 statement p'lus

the poke processing. Subtracting the 159 intervals of poke processing'leaves 991

intervals (49,55p microseconds) of processing t'ime in the A=7¡2 statement.
Event #4 shows 236 intervals, which minus the 159 poke pnocess'ing t'ime is

77 interva'ls (3,85p micnoseconds) for the A=7*7 statement. As you can see,7*7
js a much faster way to square 7 than 7¡? ts. To give you an idea of how many

65þ2 machine'instructìons the Apple ìs running to make the computations,'it has

an average speed of L,929,599 cycles per second (.9799 microseconds per cycìe).
The fastest instruction takes 2 cycles, and the slowest takes 7.

If you used one Processor Card for FTL and another for MET, you could see

that with tTL 7*7 takes 3,25P microseconds and 7n2 takes 3,6Pþ microseconds.
Th'is 'is because the 8088 is faster than the 65þ?, and because FTL uses a more

intelligent exponentiation algor^ithm than Applesoft.

THE MET READ PROGRAM
The MET READ program 'is a convenient way to quickly exam'ine timing data

either in numeric or pìotted form. The MET READ program also obtains the tim'ing
data from the Processor Card automaticaìly, and allows it to be saved to disk
and ìoaded f rom disk. The program is run s'imp'ly by typi ng RUN MET READ (see

Processor Card MET 3.4

the Installation section for disk information). Once run, MET READ wil'l ask for
the slot number of the AD8p88. Type the slot number, or type I if you do not

have the AD8ø88'installed at the moment. A message indicating whether or not

data was read from the Processor Card and whether or not data present ìn
memory seems to be in MtT format wilì be displayed. Then an = prompt appears'

and the program is ready to accept commands. Gentrally, numbers may be given

jn decimal or in hexadec'imal. Hex numbers must be preceded by a dollar sign ($).

COMMANDS
The SAVE command saves the timing data currently in memory to disk as a

"B" file. It is used the same as the SAVE command in BASIC. Exampìes: SAVE

TEST FILE or SAVE TEST FILE,D2.

The L0AD command loads timìng data previousìy saved wìth the SAVE command

(above) into memory. It is used the same as SAVE. Exampìes: L0AD TEST FILE or
LOAD TEST FILT,D2.

The CATALQG command 'is used to see a cataìog of prognams on disk. It is
the same as the CATALOG command in DOS 3.2 or DOS 3.3. Examples: CATALOG or

CATALOG,D2.

The DELETE command 'is used to delete a program from the disk. It is the

same as the DELETE command in DOS 3.2 or DOS 3.3. Examples: DELETE TEST FILE

or DELETE TEST FILE,D?.

The VIEII command is used to see the tim'ing data in numeric form. It has

various commands which are described below.
The PL0T command is used to see the timing data in plotted form. It has

vanious commands wh'ich are described below.

The QUIT command is used to leave MET READ and go back to BASIC. To use

MET READ after typing QUIT, it must be loaded from disk again.
. The HELP command lists the available commands.

VIEì'TI MODE
When in view mode, the top of the screen disp'lays severaì lìnes of tim'ing

data, and the bottom is used to type in commands. The heading at the top of the

screen could'read:
VALUE .P5MS TOTAL TIMT

In the # coìumn the consecutive event number (starting with þ) for each event is
shown. In the VALUE coìumn is the reference value for each event. The next

coìumn'is the event duratìon, in whatever un'its are shown in the heading.
Finally, in the TOTAL TIME column the total of all event durations so far is
shown. The follow'ing commands are avaiìable from view mode:

The -) key is used to see one more event. The screen rolls up one line so

the new event can appear near the bottom of the screen.
The (- key ìs used to see one previous event. The screen rolls down one

ìine so the previous event can appear near the top of the screen.

3-5 t-tET Processor Card

Note that the -) and (- keys can be used to scroll the screen onìy when the
flashing cursor is not present. (l'lhen the cursor is present, these keys ane used

as backspace and forward space as usuaì.) Pressing the return key wiìl remove

the flashing cursor and alìow the -) and (- keys to be used for scroì1ing.
The G0 T0 command is used to begin viewing with the desired event. The

consecutive event number to begin the display with must be specified. Exampìe:

G0 T0 25 (the dìspìay begins with event # 25, the 26th event).
The UI{ITS command'is used to select what un'it of time all durations will be

shown in. UNITS AUïO selects the resolution the MET program was set for when

the data was recorded. UNITS MS selects milliseconds. UNITS SEC selects
seconds. UNITS MIN selects minutes.

The EìIENTS command'is used to limit the dispìay to a particular range of
consecutive event numbers. Also, T0TAL TIME wilì be computed start'ing with the
first event in the range selected. A dash is used to separate the first and last
event numbers to be dispìayed. This command also affects the DUMP and PRINTER

commands. txamples: EVENTS 5P-Lþþ (show only events 50 through LPø, incìusive)
or EVENTS -LPP (sfrow events p through LþÐ or EVENTS - (show aìl events) or
tVtNTS 5p- (show all events from # 59 on).

The YALUES command is used to limit the display to a particular range of
reference values. A dash is used to separate the lowest and highest reference
values to be used. Onìy events with reference vaìues in the specified range will
be dispìayed. This command aìso affects the DUMP and PRINTER commands.
Examples: VALUES 5P-L9P (show onìy events with values from 50 to Lþ9, incìusive),
VALUES -199 (show only events with values 0 through I9Ð or VALUES - (show all
events) or VALUES 5p- (show on'ly events with values 59 through 255).

The BASE command is used to seìect the d'ispìay base for the VALUE column.
BASE DEC selects decimal, and BASE HEX selects hexadecimaì. Aìl hexadec'imal
numbers are preceded by a $ when displayed.

Note that the UtlITS, EVEI{TS, VALUES, and BASE commands will show their
current settings if the command is typed alone ftust UNITS, EVENTS, VALUES, or
BASE and press return).

The DUI{P command is used to create a text or "execute" file on disk
containing the reference values and durations of all events selected for display
by the EVENTS and VALUES commands. It js used the same as the SAVE command
(above.) The first line in the text file contains a number from 0 to 7 indicating
the resoìut'ion MET was set for when the data was recorded, a comma, and a

number ind'icating the number of events which follow. Each event line conta'ins a

number from I to 255 indicating the reference value, a comma, a number fnom I
to 65536 ind'icatjng the duration s'ince the previous event (in time units as
specified by the resolution indication in the first text l'ine), a comma, and a

number from l to 16416768p indicatìng the "total tjme" ('in the same units as the
duration). The last line is -1,-1,-1 to indicate the end of the file. Command

exampìes: DUMP FINAL DATA or DUMP FINAL DATA,D2

.ì

Processor Card MET 3-6

The PRINTER command 'is used to print the events selected by the TVENTS and

VALUES commands to a PR#-compatib'le printer. The slot number of the printer
must be specified. Each page will begin with two blank lines, the heading,
another bìank line, 69 ljnes of events (changeable as described be'low), and two
blank lines. Command exampìe: PRINTER 1.

The EXIT command is used to exit view mode and return to the main
program. To exit to BASIC, type QUIT.

PLOT MODE
When in plot mode, the top part of the screen is in high-resolution graphics

mode showing a plot of the timing data; and the bottom part of the screen is
used for typing commands. The horizontal axis of the pìot shows various time
durations, and the vertical ax'is shows the number of events w'ith a given
duration. The lines below the graphics area ind'icate the scale of each axis and
the nange of the horizontal axis. For example,
lp EVENTS/DrV 5p SEC/DrV

TIMtS.ø1-655.36
'ind'icates the vertical axis has 19 events per d'ivision (each division is'indicated
by a missing dot in the vertical axis), the horìzontal ax'is has 59 seconds per
division (each d'ivision is indicated by a dot below the horizontal axis), and the
range of times shown is .PL seconds to 655.36 seconds. The same plot might be

shown as:
lp EVENTS/DrV spgp 1pt4s)/DrU
TIMES 1-65536
wh'ich means 19 events per division, 5þ99 t:mes 10 milliseconds (59 seconds) per
division, and times from I times 10 miìl'iseconds (.91 seconds) to 65536 times 19
mill'iseconds (655.36 seconds). Note that the dìsplay does not show an integral
number of divis'ions e'ither verticaììy or horizontalìy. The following commands
are ava'ilable f rom pìot mode:

The UilITS, EYEilTS, YALUES, EXIT, and QUIT commands are the same as in view
mode. Settings made while in view mode will carry over to pìot mode and vice
versa.

The TIIIES command selects a range of dunations to be displayed. (The
cu rrent TIMTS setti ng 'is a'l ways di spl ayed on the next-to-top text line.) The
current UNITS command setting specifies what units the TIMES range should be
given ìn. Numbers can contain a decimal point, but may not be in hexadecimal.
Example commands while in UNITS SEC setting: TIMES sþ-LPþ (shows durations from
5þ seconds to Iþ9 seconds, inclus'ive) or TIMES -109 (shows durations up to and
includ'ing IPþ seconds) or TIMES - (shows all durations) or TIMES 59- (shows
durations from 50 seconds up).

CHANGING PARAMETERS
Both the MET program and the MET READ program have parameters in ljne Lø

J

3-7 MEÏ Processon Card

that can be changed if desired. This'is done by loading the program, l'isting
line 1p, retyping the line changing only the appropriate numbers, and saving the
program. Neither program should be changed aftelit has been run. The 'length

of ljne 19 must remain the same. If necessany, leading 0's should be added to
numbers. For example, line 19 in MET neads:
lp SLOT = 8 : BUFFER = 26624 : TIME = 8

To change buffer to 8192, type:
lp SLOT = I : BUFFER = p8192 : TIME = 8

The SLOT value is the slot number the Processor Card is p'lugged into, or 8 to
have the program ask for the slot number. The BUFFER value is the memory

address where the 8088 will write the timing data when commanded to do so, or
(for MET READ) the address where the timing data is expected to be. (BUFFER must

the set the same in MET and MET READ if MET READ will be used to read the data.
26624 is virtually the only address MET READ can use.) If BUFFER is set to 9,
the program will ask for the buffer address. The TIME value (not present 'in MET

READ) is the des'ired resolution (0 to 7) or 8 to have the program ask for the
resolution. In MET READ, there is also a line 2þ which can be changed in a

similar fashion. It is 2p LINES = 66 and it indicates the desired number of
lines per page when the PRINTER command is used. Again, care must be taken that
the length of the line is not changed.

READING DATA DIRECTLY
If you do not wish to use MET READ to nead the timing data, you can read it

yourseìf. l,lhen 248 (hex F8) is poked at location SLOT*L6-L6256 (where SL0T is
the sìot number the Processor Card is pìugged into), the 8988 will write the
timing data into memory, starting at the address indicated by BUFFER in the MET

program. (Sending a I to this address will cause the data to be discarded and

MET to be stopped.) The first byte of data will be the resolution seìected pìus
48. The next two bytes will be the length of the data (this number divided by 3

minus I indicates the number of events which follow). All following bytes are
the events, consist'ing of one byte indicating the neference value and two bytes
indìcating the time since the prev'ious event (or, for the first event, the time
s'ince the "start" command). A 65536 duration'is stored as p. The time is given
in units as specified by the seìected resolution. All two byte numbers appear
ìow byte first. There is no end marker in the data.

SETTING UP MET YOURSELF
You can have youn own Applesoft program set up MET automatical'ly. F'irst,

poke the slot number of the AD8088 card t'imes 16 into memory ìocation 6. Poke
the desired resolution (9 to 7) into location 7. 'Poke thè buffer address (where

the tim'ing data will eventual'ly be stored) into locations 8 (low byte) and 9 (high
byte), use 26624 if you will be reading the results w'ith MET READ. Next BLOAD

MET.B into memory and caìl it. For example, in an Applesoft prognam for a 48K

ì

Processor Card MET 3-8

App'le with the AD8P88 card jn slot 3, you couìd use:
1ø P0KE 6,48 : P}KE 7,ø : POKE 8,112 : P0KE g,IPz

2ø PRINT CHR$(4);"BL0AD MET.8,A37888" : CALL 37988
In this example, your program must not use any string variables before the above
lines are executed, because the MET.B pnogram is BLOADed into the string
variabìe area. The MET.B program can be ìoaded into any memory area that
doesn't conflict with anything else and where Spp bytes are available (just
substitute the appropriate address after the ",A" in the BLOAD and after the
"cALL").

The MET.B program can easily be moved to another disk. Load it into
memory by typing BL0AD MET.B,A37888 and then save it on the desired disk by
typing BSAVE MET.8,A37888,L599 (48K is required to load at th'is address).
Remember you must have a label that reads "MET @ 1982 by ALF" on any disk you
put the MET.B program on. If you plan to sell your prognam and w'ish to put
MET.B on the disks to be sold, contact ALF for a license agreement.

If MET is loaded and timing is stopped (by sending a I to location SL0T*16-
16256 or by reading the timing data), it can be restarted with any desired
resolution by poking the resoìution number pìus 48 to location SLOT*16-16256.
This will work only if MET'is still ìoaded in the 8988's RAM (programs l'ike FTL
remove MtT).

ì

4
PROM ROUTI NES

1

l

4:L PROM Routines Processor Card

INTRODUCTION
Communication with the Processor Cand is done mainly through L6 I/0 ports,

at Apple memory addresses CPxp (where x is 8 for slot 0 to F for sìot 7, and p

is the port numbê1, þ to F). In decimal, SL0T*16-16256+P (where SL0T is the slot
number, 9 to 7, and P is the port numbê:,9 to 15). Data can be written to any

of these ports. When port g is read, the most significant bit (bit 7) ìs 0 if the
ponts should not be written to or I if the Processor Card'is ready to receive
data. Bits 6 through g of the data read from port 0 are random. Ports I through

15 shouìd not be read.
The follow'ing conventions of the PROM routines are recommended for all

8p88 programs. (1) Port 0 is used as the command register. All other ports are

used to pass parameters. (2) Sending a ø to port I causes any 8p88 pnogram to
stop operation and jump to the main PR0M idle ìoop. (3) l,lhenever the most

significant bit of the data read from port 0 is 1 (i.e., the card is ready to
accept data), the 8988 is not accessing the 6502's memory (and so speed crit'ical
Appìe routines can proceed).

The 1-9-1-1 PR0M noutines use the 15 parameter ports to set 15 stored
parametens. Commands sent to the command port can access parameters already

set via the 15 parameter ports. The ports are assigned as follows:

Port Function

p

1- 11

L?

13

14

15

Commands

Reserved for the lp-5-8 Graphics Subsystem.
Address A (low byte).
Address A (high byte).
Address B ('l ow byte) .

Address B (high byte).

The commands are as follows:

Decimal Hex Function

p

1-28
29-32
33-47
48-247
248
249-259
251-255

þp
pl-lC
Lt-2p
2r-2t
3p-t7
F8

F9-FA

FB-FF

Reset to ma i n i dl e 'l oop.
Reserved for the 1p-5-8 Graphics Subsystem.
2-byte integer math functions.
S-byte f'loating-point math functions.
(Ava'il ab'le.)
Reserved fon MET.

Reserved for speciaì function.
Mi scel'laneous.

\
t

Processor Card PROM Routines 4-2

MISCELLAN EOUS COMMAN DS
The SEQUENCE command (code 251 or FB) is used to have the Processon Card

read and execute a sequence of commands in the Apple's memory. Address B must
already be set to point to the command seguence. Each command'in the sequence
must consist of two bytes. The first byte 'indicates which port number (0-15) the
second byte appìies to. For examp'le, the bytes 9E 27 in a command sequence
would have the same effect as sending a 27 to port E (14). Another SEQUTNCE

command in the command sequence causes any remaining commands in the sequence
to be ignored; processing continues at the address specified by the new SEQUENCT

command. A sequence is ended by pìacing a RESET command in the sequence (pp
pþ).

The RAt{DOl'l command (code 252 or FC) is used to obtain a "nandom" number.
Address B must already be set to the Appìe memory address where the 1 byte
result wiìl be stored. All 8 bits in the stored result wilì be "random". The
formula used is NEW p¡¡=(OLD RND * z + (BIT 2 xOR BIT 3p)) MOD 2L47483648,
where BIT 2 and BIT 39 are b'its 2 and 3P from OLD RND. This formula is run
continuously by the main idle ìoop. The least significant 8 bits of NEl,l RND are
returned by the RANDOM command.

The SET l'lEl.l0RY command (code 253 or FD) is used to set a block of 8988 or
Apple memory to a selected vaìue. Address B must already be set to the Apple
memory addness where the following tab'le js located. The first four bytes in
the table are a 4-byte memory reference indicating the start of the memony area
to set. The next two bytes are the ìength of the memory area to be set, low
byte first. The last byte in the table 'is the value to be written into the block
of memory.

The ilOVE DATA command (code 254 or FE) is used to move a block of data
from one pìace in memory to another. Address B must aìready be set to the Apple
memory address where the fol'lowing table is located. The first four bytes'in
the table are a 4-byte memory reference indicating the destination memory
address. The next four bytes are a 4-byte memory reference indicating the
source memory address. (Data is moved from the source area to the destination
area.) The source and destinat'ion areas must not overlap if the destination
address is greater than the source address. The final two bytes indicate the
number of bytes to move, low byte first.

The CALL command (code 255 or FF) is used to cause the 8988 to call a
subroutine from the main idle loop. t'lhen the subroutine returns (using an inter-
segment return), the majn idle ìoop wilì continue. Address B must already be set
to the Apple memony address where a 4-byte memory reference (the address to
caìl) is stored.

The finst two bytes of a tt-byte memory reference are the address of an
Appìe memory location or the offset of an 8988 memory ìocation, ìow byte first.
The final two bytes ane the 8p88 segment numben, ìow byte first. Appìe memory
is accessed w'ith a segment number of Lþgg hex or 4996 dec.imal.

4-3 PR0M Routines Processon Card

THE BUSY FLAG (AND RANDOM)
Note that before a command is sent, the busy flag must be examined. A

typ'ica'l assembìy language routine to read a random number into location 15 might

be:

RANDOM

BUSY

SLOT16

BUSY

#15

$cp8E , x

BUSY

#9

$cp8F , x

BUSY

#252

$cp8p, x

BUSY

15

LDX

JSR

LDA

STA

JSR

LDA

STA

JSR

LDA

STA

JSR

LDA

RTS

LDA

BPL

RTS

510T16 CONTAINS AD8p88 SLOT NUMBER * 16.

I^IAIT UNTIL AD8P88 IS READY.

SEND LOhl BYTE OF ADDRESS B.

I^IAIT UNTIL AD8P88 IS READY.

SEND HIGH BYTE OF ADDRTSS B.

WAIT UNTIL AD8P88 IS READY.

STND RANDOM NUMBER COMMAND.

I^IAIT UNTIL RESULT IS IN APPLE MEMORY.

PUT RANDOM NUMBER IN A.

RTTURN TO CALLING ROUTINE.

READ BUSY/READY STATUS.
'(AD8p88 IS BUSY, S0 WAIT.)

AD8P88 IS READY, SO RETURN.

$cp8p, x
BUSY

Integer BASIC and Applesoft BASIC are so slow that it is generally not

necessary to check the busy flags when using the RAND0M command. (The RAND0M

command can be used while FTL is active, but not while t'imìng with MET.) From

BASIC, p0KE SL0T*16-16242,6: P0KE SL0T*16-1624L,9 is used to set up address B

any time before random numbers will be needed. To obtain a random number' use

p0KE SLOT*16-L6256,252: R=PEEK(6). Note that SL0T must be the 408088 slot
number (þ to l) and R wj'll be set to a random integer from I to 255. To get n

random'integers with the smallest result being x, use INT(R/256*N)+X'in App'lesoft

BASIC or R*N/256+X 'in Integer BASIC. In Integer BASIC, n must be less than 128.

t,lhen x'is 9, thjs formula gives the same range as Integer BASIC's RND(N), except

Integer BASIC's random algorithm repeats much sooner than the 4D8988's algorithm

and so the AD8988's numbers may appear more "random". In Applesoft BASIC, n

must be less than 257. P0KE SLOT*16-L6256,252: R=PEEK(6): POKE SLOT*16-

L6256,25?. p=p+256*PEEK(6) can be used to get a random integen from I to 65535

and thus INT(R/65536*N)+X can be used for values of n up to 65536 or for more

even distribution for small values of n where 256/n is not an 'integer. Note that
the sequence of numbers from the 4D8988's random is not repeatable (especially

si nce new random numbers are cont'inuous'ly computed by the ma'in idle I oop),

whereas Applesoft onìy has repeatabìe sequences. The 4D8988's random can be a

s.ignìficant advantage where repeatabìe (or predictabìe) numbers are not desired.

1

Processor Card PROM Routines 4-4

INTEGER MATH COMMANDS
The UÎ{SIGilED IÎ{TEGER I,IULTIPLY command (code 29 or lD) is used to mu]tiply

two uns'igned Z-byte integers. Address B must already be set to the Apple memory

address where the two multiplicands are stored. Each mu'ltipìicand consists of
two bytes, stored ìow byte first. The 4-byte product 'is stored, ìow byte first,
over the multipìicands.

The SIGI{ED II{TEGER I,IULTIPLY command (code 39 or lE) 'is used to muìt'ipìy
two signed 2-byte integers. Address B must aìready be set to the Appìe memory

address where the two multipìicands are stored. Each multiplicand consists of
two bytes, stored low byte first, in two's complement form. The 4-byte two's
comp'lement product is stored, low byte first, over the mult'iplicands.

The UÎ{SIGilED II{TEGER DMDE command (code 31 or lF) 'is used to divide a 4-
byte unsigned integer by a Z-byte unsigned integer. Address B must aìready be

set to the Apple memory address where the dividend and divisor are stored. The
div'idend is stored first. The 2-byte quotient will be stored over the first two
bytes of the d'ividend, and the Z-byte remainder will be stored over the last two
bytes of the dividend. The divisor is left unmodified. All numbers are stoned
low byte first. If an overflow occuns, the quotient will be 899þ hex and the
remainder is undetermined.

The SIGNED'II{TEGER DMDE command (code 32 or 29 hex) is used to divide a

4-byte signed integer by a Z-byte signed integer. Address B must already be set
to the Apple memony address where the dividend and divisor are stored. The
dividend is stored first. The 2-byte quotient will be stored over the first two
bytes of the div'idend, and the 2-byte remainder will be stored oven the ìast two
bytes of the dividend. The divisor is left unmodified. All numbers are two's
complement and stored low byte first. If an overflow occurs, the quotient will
be 8þþ9 hex and the remainder is undetermined.

FLOATING.POINT MATH COMMANDS
All floating-point numbers are 5 bytes long. The first 4 bytes contain the

mant'issa in two's comp'lement format, ìow byte first. The binary point precedes
the most significant mantissa bit (bit 7 of the most significant mantissa byte ìs
the mantissa sign, bit 6 is the most significant bit). The fifth byte is the base
2 exponent in tv{o's complement w'ith the sign bit comp'lemented. Zero is
represented by all 5 bytes being zero. All non-zero numbers must be normalized
(the sign bit of the mantissa must be the complement of the most significant bit
of the mantissa).

Aìl fìoating-point operations work on a "stack" basis. The argument(s) are
"popped" from a stack in the Appìe's memory, and the result is "pushed" onto the
stack. The B address is aìways the address of the first byte (lowest mantissa
byte) of the top item in the stack. (Thus, the B address must always be properly
set before us'ing any of the floating-point operations.) The stack expands toward
lower-numbered memory addnesses.

)

"/

4-5 PROM Routines Processor Card

The PUSH command (code 33 or 21 hex) is used to push a floating-point
number onto the steck. It decrements the B address by 5. The Appìe program
must keep its ovln copy of the B address so the floating-point number can be
written into the new top-of-stack locdtion refìected by the new B address value.

The POP command (code 34 or ?2 hex) is used to pop a fìoating-point number
off the stack. It increments the B address by b.

The FLOAT command (code 35 or 23 hex) is used to convert an integer into a
fìoating point number. The top-of-stack must be a 4-byte signed two's compìement
integer stored low byte first in the mantissa bytes, and the byte which is
normally the exponent must be 159 (9F hex). The FL0AT command consists only of
the normalize function.

The FIX command (code 36 or 24 hex) computes the greatest integer function
for the top-of-stack. The result is not normalized, and the exponent is aìways
159; thus the mantissa bytes represent a two's comp'lement 4-byte integer.

The following commands perform the indicated function, taking the required
argument(s) off the stack, and pushing the result on the stack. Error conditions
are not reported. 0verflows are returned as (2ISZ-¡¡*Z^LZI or -(2nl59), and
underflows are returned as p. ',T0S,, is top-of-stack numþer, and ,,N0S', is next-
to-top-of-stack number.

DECIMAL CODE HEX CODE FUNCTION

37

38

39

49

4L

42

43

44

45

46

47

25

26

27

28

29

2A

28

2C

2D

2E

2t

T0S=N0S+T0S

T0S=N0S-T0S

T0S=N0S*T0S

195=¡Qg/T0S
T0S=-T0S

T0S=LOG T0S

T0s=2^T0s
T0s=N0s^T0s
T0S=SIN T0S

T0S=COS T0S

T0S=ATN T0S

(base 2)

(radi ans)
(rad'i ans)
(radi ans)

LOI.J

The folìow'ing constants may be heìpful:

HIGH TXP VALUE

95

FC

42

51

1D

þs
4D

55

B9

Lp

87

5C

58

4D

64

81

8þ

7F

82

ìog base 2 of e

ìog base e of 2

log base I9 of 2

piED

ì

Processor Card PROM Routines 4-6

DIRECT CALLS IN 8088
The floating-point routines can be called direct'ly from 8088 programs.

[8p88 machine language prognamming is not described in this manual. The Intel

"iAPX 88 Book", available from Intel Corporation (3065 Bowers Avenue; Santa

Clara, CA 95951; Attn.: Literature Department) descnibes the 8988 processor. This

book is also ava'ilable from ALF, order number Ll-2-2.1 Intra-segment calls must

be used. (This can be accomplished by setting the code segment to FtþO hex and

locating your program in the on-board RAM.) The arguments shown as NOS and T0S

(above) must be placed in 8988 registers. DI is the two least significant bytes

of the mantissa of T0S, BP is the two most sign'ificant mantissa bytes, and DL is
the exponent. For NOS, these registers are SI, BX, and CL. The addresses are as

fol I ows:

FLOAT

FIX
ADD

SUBTRACT

MULT I PLY

DIVIDE

NEGATE

L0GARITHt'l

ANT I -LOG

EXPONTNÏIAT ION

SINE

COSINE

ARCTANGENT

PBFA
pBsT

þBB4
pBBl

øc36
pcTt

9c25
pD3B

þDe4

9D8?
pDFC

pDF I
9E4E

")

..AVAILABLE' COMMAND CODES
The available command codes (48-?47 or 39-F7) can be i¡sed to call 8p88

subroutìnes. Codes must be used from 48 up. tlith data segment set to 999P,
location 29 $4 hex) must be set to the first unused command code (tnis is
normaììy set to 48, of course). Locat'ions 2L-24 (15-18 hex) must be set to the 4-

byte memory reference (Dword) of the user-provided command address table
(containing the 4-byte memory references (Dwords) of each command, starting with
code 48). These 5 bytes can be set using the M0VE DATA command. Your command

will be called with an inter-segment call. AL will be the command code used.
Locations 99-44 (1E-2C) are the parameters sent to ports 1-15. Your command must

return with an inter-segment return, and a'll registers may be changed except SP

and SS. RAM locat'ions 9-511 (9-tff¡ must not be changed (except ?P'24, 14-18

hex). Current stack contents, beginnìng at ?þ47 (7FF) and going to SP must not be

changed (SS ìs p99Ð.

€

SUVfUTOUVH
f.a

(,

5-1 Hardware Processor Card

MEMORY ALLOCATION
FUNCT I ON

On-board RAM.

Optional on-board RAM.

Reserved.
Apple memory.

Expansion port.
Reserved.
0n-board PR0M.

I'O ALLOCATION
ADDRESS FUNCTION

9þ (wnite, with any data) Clear busy flag.
øP (read) Data from Appìe I/O interface.
pL (read) I/0 interface status.
p?-7F Reserved.
9þ-ff Expansion port.

I'O INTERFACE STATUS
Most significant bit is 0 when data is present (to be read from I/0 address

9Ð, Four ìeast significant bits are the address the data was written to by the
Apple. See the PROM Routines section for a description of Apple I/0 from the
Apple side.

Ð(PANSION PORT
PIN # NAME DESCRIPTION

ADDRESS

9øþgg-pplFr
998þø-qLttF
9?p99-pFtrr
L99pp-LttFt
?øþpp-?tttF
39ø9ø-FEtFt
ttøøø-FFtFt

A1

Aþ

A5

A4

I
2

3

4

5

6

7

8

Address line 1

Address line I
Address line 5

Address line 4

Drives 16 LS loads.
Drives 16 LS loads.
Drives 16 LS loads.
Drives 16 LS ìoads.

A6

A2

A7

A3

Address line 6.
Address line 2.
Address line 7.
Address line 3.

Drives 16 LS loads.
Drives 16 LS loads.
Drives 16 LS loads.
Drives 16 LS loads.

9

L9

11

T2

DMAE

EXTA

TRFE

Dø

DMA cycle enable. I LS loads.
Expansion port memory enable. Drives Zg tS loads.
DMA transfer enable. Drives 16 LS ìoads.
Data line 0. 3 LS loads, drives 2.

Processon Card

ALE

D1

DEÑ'

D2

DT/R

D3

ro/m
D4

mñ

D5

GND

D6

m
D7

GND

A8

GND Sjgnal ground.
A9 Address line 9. Drives 2 LS loads.
RESET Reset. Drives lp LS loads.
Al9 Addness line 19. Drives 2 LS loads.

Hardware 5-2

ì 13

T4

15

16

T7

18

19

2p

Address latch enable. Drives 4 LS loads.
Data ì i ne 1. 3 LS I oads, dri ves 2.
Data enable. Drives 3 LS loads.
Data line 2. 3 LS loads, drives 2.

Data transmit/receive. Drives 2 LS loads.
Data Iine 3. 3 LS loads, drives 2.
I nput-output/memory. Dn'i ves 3 LS I oads.
Data l'ine 4. 3 LS loads, drives 2.

t^lri te. Dri ves 3 LS I oads.
Data ìine 5. 3 LS loads, drives 2.
Signaì ground.
Data line 6. 3 LS loads, dnives 2.

Read. Drives 3 LS Ioads.
Data line 7. 3 LS loads, drives 2.
Si gnaì ground.
Address line 8. Drives 2 LS loads.

2T

22

23

24

þ

25

?6

27

28

29

3þ

31

32

33

34

35

36

37

38

39

4p

CLK

All
415

AL2

XRDY

413

PCLK

A14

Clock. Drives 18 LS loads.
Address line 11. Drives 2 LS loads.
Address line 15. Drives 2 LS loads.
Addness line 12. Drives 2 LS loads.

Expansion port ready. I LS loads.
Address line 13. Drives 2 LS loads.
Peripheral clock. Drives 12 LS loads.
Address line 14. Drives 2 LS loads.

J

The foìlowing lines are not normal 8p88 lines:
DI{AE: when held ìow through the expansion port, it causes the Processor

Card to generate an Apple DMA cycìe. During a DMA write, the data to be
wnitten must be enabìed directly to the Apple bus data ìines. TRFE indicates
when data must be enabled on the Apple bus (or can be read from the Apple
bus).

EXTA: goes low when any location from Zpppp-\ttFF is accessed.
TRFE: goes low when the Appìe bus is in DMA mode (whether requested with

5-3 Hardware Processor Card

DMAE on through normal Processor Card operations).
The ribbon cable mating connector for the expansion port is a 3M

Scotchflex plug connector, 3M part number 3324'þþþI.

PROM SIZE SELECTION
fhe 2K/4K PR0M jumper is used to select a 2K (27L6) or 4K (2732) PR0M in

socket position "d". I,lhen a wire is connected from the pad with an arrow to
the pad marked "2", d 2K PROM is selected. When a wire is connected from the
pad w'ith an arrou, to the pad marked rr4r', a 4K PROM is selected. 35P ns PROMS

must be used. See the schematic for proper address and data ìine mapping.

ON.BOARD RAM ÐPANSION
The on-board RAf't can be expanded from 2K to 8K in 2K increments s'impìy by

inserting additional memory chips. To expand the memory from 2K to 4K, a chip
'is pìugged into socket position "cl". To expand to 6K, also insert a chip in
position "c2". For 8K, aìso use pos'ition "c3". The Toshiba TMM2016P memory

chip shouìd be used. (Other 2K by I RAM ch'ips with 159 ns access times may be

compatible.) Extreme care must be used to protect the memory chip from static
eìectricity once it is nemoved from its protective packaging. Insert or
remove memory chips only when the card is not plugged into the Apple. Care

must be taken that the pin 1 indicator is to the top of the circuit card (ttre
same as the factory-instaìled chip).

L,

a
741S00

I
741S04

i
741S10

v
7 4LS?7

b
74LS74A

h
74LS74A

J
7 4L532

w
7 4LSL25

>-
+

c3 cZ cl c0
TMM2O16 TMM2O16 TMM2OI6 TMM2O16

\.1

Schematic Terminals

Apple bus connection

AD8O88 expansion bus

lnternal connections

d
2732A

-t

!-t
o
c)
(D
vl
rtt
o
-t
C)
o,-to

e f
8284

t
74SC373

8088

pr
74SC373 745C244

k
741S139

x
741S04

m

7 4LS7 4A

v
741S375

n
7 45C244

z
741S375

q
745C244

s
7 45C244

u
74SC373

-o,
-to
ã
Ê,-t
lD

(¡
IÞ

a

d t
a

eba

utsfqpnk
zvx

hg

II

v

coc1c2c3

m

w

1

1

2k

BALE

ï_ o.au¡

AO

A1

A2

A3

DO

D1

tolm

D2

D3

D4

D5

D6

D7

R/w
FE¡

18

45

1D
z

u

1

2

12

a

15

tolm
ot/R

ALE

D7

e

MNA'T

D6

All

A13

A15

5

3

12

I

v

CLK

't8

k

.o/ú
DEN

412

Æ3

414

APPA

k
Yl

CE

All

7

d

cO

o1

rol

W-e

All
WR

(tl
I(tl

-Ê,-tè
€
o,-t
lD

to expansion RAM sockets

+5

'l

'r,
1o
cl
(D
V,
aJl
o-t
c)
o,-t
Õ-

4

'r{

'u
-to
(l
(D
th
t
o
-t
C)
ÊJ-to

17

42

-o,
Io
€
o,-t
lD

(tl
I
Or

ú*.

II

BALE

I luF
12 times

DMA ln

o3
0o

2k +5

CLK

D
b

a

a

b

11

13

m

h

Dffi
DTlF

EN

t

o1

l3

t5

17

2

4

Y

'n

AO

A1

415

A2

A14

A3

A13

A4

A12

A5

All

A6

A10

A7

A8

A9

DTi-A

DTlñ

l"
I4E-J

¿9

¿18

47

aÂ

45

44

3

4

5

6

7

a

o

ln

fl

12

i3

7¿

t5

412

A13

414

415

Rlw

DO

D1

D2

D3

D4

D5

D6

AO

Ð7

AI

A2

A3

A4

A5

A6

A7

A8

A9

A10

All

FõY

GND

+5V
lntOut

lnt ln

GND

GND

GND

.. .o

tl) 9þt¿.r1f,

II ilÏlt

c
o
c
o
o
c
c
c

o
o

o

ì9

oc{oo

iser(0

G'i*!-¿

c9fl$te

il

oo

@rgar
I\LË
5..-1 -7ts

il
U'

ry

i

IIIN

ü

trt
F

EÐ

@E

ffi
F;-Ã]F¡rlt

r,lfit¡rlt¡
E

&trm¡t tÍra[* rtF,{

SJ

c

E

lErrñE:ñltt

Æil

il

E---.- !E

(EIfIIÐ

Fæ !

MM¡tÌar

trTEEEE
N

w

ffi
=
Ë
Èùt-

ffi

Iç
o

('

t{,

B-ç aJP¡lpJPH pJPJ JOSSAIoJd

INDÐ(
8088 conventions: 4-1
8p88 direct caìls: 4-6

Busy fìag: 4-1, 4-3

Constants: 4-5

DOS 3.2: I-2, 3-4
DOS 3.3: L-2, 2-L to 2-2, 3-4

Expansion port: 5-1 to 5-3

MET, picking a resolution: 3-1 to 3-2
MET, restarting: 3-8
MET, setting up: 3-1
MET, setting up younseìf: 3-7 to 3-8
MET timing: 3-2 to 3-3
MET READ: 3-3 to 3-7
MET READ buffer variable: 3-7
MET READ, changing parameters: 3-6 to 3-7
MET READ commands: 3-4
MtT READ lines variable: 3-7
MET READ p'lot mode: 3-6
MET READ view mode: 3-4 to 3-6

Parameter p
Photo: 5-8
Preparing t
PROM comman
PROM comman
PR0M comman
PROM comman
PR0M comman
PROM routi n

PROM size s
Protected D

4-L
FTL.
FTL,
FTL
FTL,
FTL,
FTL,
FTL,
FTL,

B:
a

'in

i
I
s

srto

I
I
I

/o
/0
/0

2-2 to 2-3
uto slot: 2-z
troduction: 2-l
s 'it in memory?z 2-2
osing: 2-L to 2-Z
ett'ing up younseì f :

stays in memoryz 2-I
using z 2-t

al location: 5-1
interface status: 5-1
ports: 4-1,4-3,5-1

'|APX 88 book: 4-6
Instal I i ng the card: 1-1
Integer BASIC: 2-I to 2-?

Language card: I-2, 2-L

MET.Bz 3-7 to 3-8
Memory al I ocat'i on : 5- I
Memory reference, 4-byte:
MET and FTL: 3-1, 3-3
MET buffer variable: 3-7
MET, changing parameters:
MET data, reading dìrectly:
MET introduction: 3-l

2-2 to 2-3

4-2

3-6 to 3-7
3-7

he di sk: I-?
ds: 4-1 to 4-5
ds, "avai I abl e": 4-6
ds, integer math: 4-4
ds, floating pointz 4-4 to 4-5
ds, miscellaneousz 4-Z
es introduction: 4-1
election: 5-3
0S 3.3 disksz 2-I to ?-2

Radio-TV intenference: L-?
RAM card: l-2, 2-I
RAM expansion: 5-3
Random: 4-2, 4-3
Repa'ir illustration: 5-7

Schematic: 5-4 to 5-6
Slot number: 2-L, 2-?, 3-2, 3-3, 3-4, 3-7,

4-1,4-3

Ti ps: 1-1
Typing "FP": L-z

I

Processor Card Addendum

USING TWO OR MORE CARDS
When two or more AD8p88 Processor Cands ane used in one Apple, the DMA

daisy chain must run through each card. This aìlows the cards to access the
Apple's memory one at a time in a contro'lled fashion. The daisy chain is
"broken" by an empty slot or a card which doesn't connect DMA IN to DMA OUT (the
edge contacts on each side of the card, second set from the back).

If all cards in your Apple have the DMA lines properìy connected, just make
sure there are no empty slots between Processor Cards (tnat is, all empty slots
ane at the far left or right). If you suspect the DMA lines may not be properly
connected on some of yout' peripheraì cards, just be sure to pìug a'll processor
Cards in adjacent s'lots.

DMA TECHNICAL DETALS
Ïhe Processor Card is not necessariìy compatible with other products that

use DMA because Apple has not selected a standard DMA procedure. The rules for
compatibility with the system used in the Processor Card are as follows:

1. A card must not change its DMA OUT line while Q3 is low and phase p is
high. (A flip-flop clocked by a negative transition of Q3 can be used to generate
DMA OuT.)

2. A card must pu'lì the DMA line low onìy when phase g goes ìow and onìy
if its DMA IN line is high at that time.

3. A card must stop pu1ìing the DMA line low at the next negative transition
of phase p (unless its DMA IN ìine is still high).

The AD8988 will hold DMA low for on'ly one cycle of phase g. Howeven, it
does not return DMA OUT to high until Q3 goes low just before the negative
transition of phase g in the cyc'le following the DMA cycle. This allows the
Apple to run for one cycle foìtowing any DMA access (or group of accesses from
multiple cards), thus preventing loss of register contents.

.ï

;

